3.5.39 \(\int \frac {(a+b \log (c (d+\frac {e}{\sqrt {x}})^n))^3}{x^2} \, dx\) [439]

3.5.39.1 Optimal result
3.5.39.2 Mathematica [A] (verified)
3.5.39.3 Rubi [A] (verified)
3.5.39.4 Maple [F]
3.5.39.5 Fricas [B] (verification not implemented)
3.5.39.6 Sympy [F]
3.5.39.7 Maxima [B] (verification not implemented)
3.5.39.8 Giac [B] (verification not implemented)
3.5.39.9 Mupad [B] (verification not implemented)

3.5.39.1 Optimal result

Integrand size = 24, antiderivative size = 285 \[ \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx=\frac {3 b^3 n^3 \left (d+\frac {e}{\sqrt {x}}\right )^2}{4 e^2}+\frac {12 a b^2 d n^2}{e \sqrt {x}}-\frac {12 b^3 d n^3}{e \sqrt {x}}+\frac {12 b^3 d n^2 \left (d+\frac {e}{\sqrt {x}}\right ) \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{e^2}-\frac {3 b^2 n^2 \left (d+\frac {e}{\sqrt {x}}\right )^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{2 e^2}-\frac {6 b d n \left (d+\frac {e}{\sqrt {x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2}{e^2}+\frac {3 b n \left (d+\frac {e}{\sqrt {x}}\right )^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2}{2 e^2}+\frac {2 d \left (d+\frac {e}{\sqrt {x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{e^2}-\frac {\left (d+\frac {e}{\sqrt {x}}\right )^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{e^2} \]

output
12*b^3*d*n^2*ln(c*(d+e/x^(1/2))^n)*(d+e/x^(1/2))/e^2-6*b*d*n*(a+b*ln(c*(d+ 
e/x^(1/2))^n))^2*(d+e/x^(1/2))/e^2+2*d*(a+b*ln(c*(d+e/x^(1/2))^n))^3*(d+e/ 
x^(1/2))/e^2+3/4*b^3*n^3*(d+e/x^(1/2))^2/e^2-3/2*b^2*n^2*(a+b*ln(c*(d+e/x^ 
(1/2))^n))*(d+e/x^(1/2))^2/e^2+3/2*b*n*(a+b*ln(c*(d+e/x^(1/2))^n))^2*(d+e/ 
x^(1/2))^2/e^2-(a+b*ln(c*(d+e/x^(1/2))^n))^3*(d+e/x^(1/2))^2/e^2+12*a*b^2* 
d*n^2/e/x^(1/2)-12*b^3*d*n^3/e/x^(1/2)
 
3.5.39.2 Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 558, normalized size of antiderivative = 1.96 \[ \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx=\frac {-4 a^3 e^2+6 a^2 b e^2 n-6 a b^2 e^2 n^2+3 b^3 e^2 n^3-12 a^2 b d e n \sqrt {x}+36 a b^2 d e n^2 \sqrt {x}-42 b^3 d e n^3 \sqrt {x}-8 b^3 d^2 n^3 x \log ^3\left (d+\frac {e}{\sqrt {x}}\right )-4 b^3 e^2 \log ^3\left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )+12 a^2 b d^2 n x \log \left (e+d \sqrt {x}\right )-36 a b^2 d^2 n^2 x \log \left (e+d \sqrt {x}\right )+42 b^3 d^2 n^3 x \log \left (e+d \sqrt {x}\right )+6 b^2 d^2 n^2 x \log \left (d+\frac {e}{\sqrt {x}}\right ) \left (-2 a+3 b n-2 b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right ) \left (2 \log \left (e+d \sqrt {x}\right )-\log (x)\right )-6 a^2 b d^2 n x \log (x)+18 a b^2 d^2 n^2 x \log (x)-21 b^3 d^2 n^3 x \log (x)+6 b^2 d^2 n^2 x \log ^2\left (d+\frac {e}{\sqrt {x}}\right ) \left (2 a-3 b n+2 b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )+2 b n \log \left (e+d \sqrt {x}\right )-b n \log (x)\right )+6 b^2 \log ^2\left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right ) \left (e \left (-2 a e+b n \left (e-2 d \sqrt {x}\right )\right )+2 b d^2 n x \log \left (e+d \sqrt {x}\right )-b d^2 n x \log (x)\right )-6 b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right ) \left (e \left (2 a^2 e+b^2 n^2 \left (e-6 d \sqrt {x}\right )-2 a b n \left (e-2 d \sqrt {x}\right )\right )+2 b d^2 n (-2 a+3 b n) x \log \left (e+d \sqrt {x}\right )+b d^2 n (2 a-3 b n) x \log (x)\right )}{4 e^2 x} \]

input
Integrate[(a + b*Log[c*(d + e/Sqrt[x])^n])^3/x^2,x]
 
output
(-4*a^3*e^2 + 6*a^2*b*e^2*n - 6*a*b^2*e^2*n^2 + 3*b^3*e^2*n^3 - 12*a^2*b*d 
*e*n*Sqrt[x] + 36*a*b^2*d*e*n^2*Sqrt[x] - 42*b^3*d*e*n^3*Sqrt[x] - 8*b^3*d 
^2*n^3*x*Log[d + e/Sqrt[x]]^3 - 4*b^3*e^2*Log[c*(d + e/Sqrt[x])^n]^3 + 12* 
a^2*b*d^2*n*x*Log[e + d*Sqrt[x]] - 36*a*b^2*d^2*n^2*x*Log[e + d*Sqrt[x]] + 
 42*b^3*d^2*n^3*x*Log[e + d*Sqrt[x]] + 6*b^2*d^2*n^2*x*Log[d + e/Sqrt[x]]* 
(-2*a + 3*b*n - 2*b*Log[c*(d + e/Sqrt[x])^n])*(2*Log[e + d*Sqrt[x]] - Log[ 
x]) - 6*a^2*b*d^2*n*x*Log[x] + 18*a*b^2*d^2*n^2*x*Log[x] - 21*b^3*d^2*n^3* 
x*Log[x] + 6*b^2*d^2*n^2*x*Log[d + e/Sqrt[x]]^2*(2*a - 3*b*n + 2*b*Log[c*( 
d + e/Sqrt[x])^n] + 2*b*n*Log[e + d*Sqrt[x]] - b*n*Log[x]) + 6*b^2*Log[c*( 
d + e/Sqrt[x])^n]^2*(e*(-2*a*e + b*n*(e - 2*d*Sqrt[x])) + 2*b*d^2*n*x*Log[ 
e + d*Sqrt[x]] - b*d^2*n*x*Log[x]) - 6*b*Log[c*(d + e/Sqrt[x])^n]*(e*(2*a^ 
2*e + b^2*n^2*(e - 6*d*Sqrt[x]) - 2*a*b*n*(e - 2*d*Sqrt[x])) + 2*b*d^2*n*( 
-2*a + 3*b*n)*x*Log[e + d*Sqrt[x]] + b*d^2*n*(2*a - 3*b*n)*x*Log[x]))/(4*e 
^2*x)
 
3.5.39.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.01, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2904, 2848, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx\)

\(\Big \downarrow \) 2904

\(\displaystyle -2 \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{\sqrt {x}}d\frac {1}{\sqrt {x}}\)

\(\Big \downarrow \) 2848

\(\displaystyle -2 \int \left (\frac {\left (d+\frac {e}{\sqrt {x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{e}-\frac {d \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{e}\right )d\frac {1}{\sqrt {x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -2 \left (\frac {3 b^2 n^2 \left (d+\frac {e}{\sqrt {x}}\right )^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{4 e^2}-\frac {6 a b^2 d n^2}{e \sqrt {x}}-\frac {3 b n \left (d+\frac {e}{\sqrt {x}}\right )^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2}{4 e^2}+\frac {3 b d n \left (d+\frac {e}{\sqrt {x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2}{e^2}+\frac {\left (d+\frac {e}{\sqrt {x}}\right )^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{2 e^2}-\frac {d \left (d+\frac {e}{\sqrt {x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{e^2}-\frac {6 b^3 d n^2 \left (d+\frac {e}{\sqrt {x}}\right ) \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )}{e^2}-\frac {3 b^3 n^3 \left (d+\frac {e}{\sqrt {x}}\right )^2}{8 e^2}+\frac {6 b^3 d n^3}{e \sqrt {x}}\right )\)

input
Int[(a + b*Log[c*(d + e/Sqrt[x])^n])^3/x^2,x]
 
output
-2*((-3*b^3*n^3*(d + e/Sqrt[x])^2)/(8*e^2) - (6*a*b^2*d*n^2)/(e*Sqrt[x]) + 
 (6*b^3*d*n^3)/(e*Sqrt[x]) - (6*b^3*d*n^2*(d + e/Sqrt[x])*Log[c*(d + e/Sqr 
t[x])^n])/e^2 + (3*b^2*n^2*(d + e/Sqrt[x])^2*(a + b*Log[c*(d + e/Sqrt[x])^ 
n]))/(4*e^2) + (3*b*d*n*(d + e/Sqrt[x])*(a + b*Log[c*(d + e/Sqrt[x])^n])^2 
)/e^2 - (3*b*n*(d + e/Sqrt[x])^2*(a + b*Log[c*(d + e/Sqrt[x])^n])^2)/(4*e^ 
2) - (d*(d + e/Sqrt[x])*(a + b*Log[c*(d + e/Sqrt[x])^n])^3)/e^2 + ((d + e/ 
Sqrt[x])^2*(a + b*Log[c*(d + e/Sqrt[x])^n])^3)/(2*e^2))
 

3.5.39.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2848
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_. 
)*(x_))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(f + g*x)^q*(a + b*Log[c*(d 
 + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[e*f - 
 d*g, 0] && IGtQ[q, 0]
 

rule 2904
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m 
_.), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*L 
og[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, 
 x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) & 
&  !(EqQ[q, 1] && ILtQ[n, 0] && IGtQ[m, 0])
 
3.5.39.4 Maple [F]

\[\int \frac {{\left (a +b \ln \left (c \left (d +\frac {e}{\sqrt {x}}\right )^{n}\right )\right )}^{3}}{x^{2}}d x\]

input
int((a+b*ln(c*(d+e/x^(1/2))^n))^3/x^2,x)
 
output
int((a+b*ln(c*(d+e/x^(1/2))^n))^3/x^2,x)
 
3.5.39.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 541 vs. \(2 (249) = 498\).

Time = 0.34 (sec) , antiderivative size = 541, normalized size of antiderivative = 1.90 \[ \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx=\frac {3 \, b^{3} e^{2} n^{3} - 4 \, b^{3} e^{2} \log \left (c\right )^{3} - 6 \, a b^{2} e^{2} n^{2} + 6 \, a^{2} b e^{2} n - 4 \, a^{3} e^{2} + 4 \, {\left (b^{3} d^{2} n^{3} x - b^{3} e^{2} n^{3}\right )} \log \left (\frac {d x + e \sqrt {x}}{x}\right )^{3} + 6 \, {\left (b^{3} e^{2} n - 2 \, a b^{2} e^{2}\right )} \log \left (c\right )^{2} - 6 \, {\left (2 \, b^{3} d e n^{3} \sqrt {x} - b^{3} e^{2} n^{3} + 2 \, a b^{2} e^{2} n^{2} + {\left (3 \, b^{3} d^{2} n^{3} - 2 \, a b^{2} d^{2} n^{2}\right )} x - 2 \, {\left (b^{3} d^{2} n^{2} x - b^{3} e^{2} n^{2}\right )} \log \left (c\right )\right )} \log \left (\frac {d x + e \sqrt {x}}{x}\right )^{2} - 6 \, {\left (b^{3} e^{2} n^{2} - 2 \, a b^{2} e^{2} n + 2 \, a^{2} b e^{2}\right )} \log \left (c\right ) - 6 \, {\left (b^{3} e^{2} n^{3} - 2 \, a b^{2} e^{2} n^{2} + 2 \, a^{2} b e^{2} n - 2 \, {\left (b^{3} d^{2} n x - b^{3} e^{2} n\right )} \log \left (c\right )^{2} - {\left (7 \, b^{3} d^{2} n^{3} - 6 \, a b^{2} d^{2} n^{2} + 2 \, a^{2} b d^{2} n\right )} x - 2 \, {\left (b^{3} e^{2} n^{2} - 2 \, a b^{2} e^{2} n - {\left (3 \, b^{3} d^{2} n^{2} - 2 \, a b^{2} d^{2} n\right )} x\right )} \log \left (c\right ) - 2 \, {\left (3 \, b^{3} d e n^{3} - 2 \, b^{3} d e n^{2} \log \left (c\right ) - 2 \, a b^{2} d e n^{2}\right )} \sqrt {x}\right )} \log \left (\frac {d x + e \sqrt {x}}{x}\right ) - 6 \, {\left (7 \, b^{3} d e n^{3} + 2 \, b^{3} d e n \log \left (c\right )^{2} - 6 \, a b^{2} d e n^{2} + 2 \, a^{2} b d e n - 2 \, {\left (3 \, b^{3} d e n^{2} - 2 \, a b^{2} d e n\right )} \log \left (c\right )\right )} \sqrt {x}}{4 \, e^{2} x} \]

input
integrate((a+b*log(c*(d+e/x^(1/2))^n))^3/x^2,x, algorithm="fricas")
 
output
1/4*(3*b^3*e^2*n^3 - 4*b^3*e^2*log(c)^3 - 6*a*b^2*e^2*n^2 + 6*a^2*b*e^2*n 
- 4*a^3*e^2 + 4*(b^3*d^2*n^3*x - b^3*e^2*n^3)*log((d*x + e*sqrt(x))/x)^3 + 
 6*(b^3*e^2*n - 2*a*b^2*e^2)*log(c)^2 - 6*(2*b^3*d*e*n^3*sqrt(x) - b^3*e^2 
*n^3 + 2*a*b^2*e^2*n^2 + (3*b^3*d^2*n^3 - 2*a*b^2*d^2*n^2)*x - 2*(b^3*d^2* 
n^2*x - b^3*e^2*n^2)*log(c))*log((d*x + e*sqrt(x))/x)^2 - 6*(b^3*e^2*n^2 - 
 2*a*b^2*e^2*n + 2*a^2*b*e^2)*log(c) - 6*(b^3*e^2*n^3 - 2*a*b^2*e^2*n^2 + 
2*a^2*b*e^2*n - 2*(b^3*d^2*n*x - b^3*e^2*n)*log(c)^2 - (7*b^3*d^2*n^3 - 6* 
a*b^2*d^2*n^2 + 2*a^2*b*d^2*n)*x - 2*(b^3*e^2*n^2 - 2*a*b^2*e^2*n - (3*b^3 
*d^2*n^2 - 2*a*b^2*d^2*n)*x)*log(c) - 2*(3*b^3*d*e*n^3 - 2*b^3*d*e*n^2*log 
(c) - 2*a*b^2*d*e*n^2)*sqrt(x))*log((d*x + e*sqrt(x))/x) - 6*(7*b^3*d*e*n^ 
3 + 2*b^3*d*e*n*log(c)^2 - 6*a*b^2*d*e*n^2 + 2*a^2*b*d*e*n - 2*(3*b^3*d*e* 
n^2 - 2*a*b^2*d*e*n)*log(c))*sqrt(x))/(e^2*x)
 
3.5.39.6 Sympy [F]

\[ \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx=\int \frac {\left (a + b \log {\left (c \left (d + \frac {e}{\sqrt {x}}\right )^{n} \right )}\right )^{3}}{x^{2}}\, dx \]

input
integrate((a+b*ln(c*(d+e/x**(1/2))**n))**3/x**2,x)
 
output
Integral((a + b*log(c*(d + e/sqrt(x))**n))**3/x**2, x)
 
3.5.39.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 568 vs. \(2 (249) = 498\).

Time = 0.23 (sec) , antiderivative size = 568, normalized size of antiderivative = 1.99 \[ \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx=\frac {3}{2} \, a^{2} b e n {\left (\frac {2 \, d^{2} \log \left (d \sqrt {x} + e\right )}{e^{3}} - \frac {d^{2} \log \left (x\right )}{e^{3}} - \frac {2 \, d \sqrt {x} - e}{e^{2} x}\right )} - \frac {b^{3} \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right )^{3}}{x} + \frac {3}{4} \, {\left (4 \, e n {\left (\frac {2 \, d^{2} \log \left (d \sqrt {x} + e\right )}{e^{3}} - \frac {d^{2} \log \left (x\right )}{e^{3}} - \frac {2 \, d \sqrt {x} - e}{e^{2} x}\right )} \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right ) - \frac {{\left (4 \, d^{2} x \log \left (d \sqrt {x} + e\right )^{2} + d^{2} x \log \left (x\right )^{2} - 6 \, d^{2} x \log \left (x\right ) - 12 \, d e \sqrt {x} + 2 \, e^{2} - 4 \, {\left (d^{2} x \log \left (x\right ) - 3 \, d^{2} x\right )} \log \left (d \sqrt {x} + e\right )\right )} n^{2}}{e^{2} x}\right )} a b^{2} + \frac {1}{8} \, {\left (12 \, e n {\left (\frac {2 \, d^{2} \log \left (d \sqrt {x} + e\right )}{e^{3}} - \frac {d^{2} \log \left (x\right )}{e^{3}} - \frac {2 \, d \sqrt {x} - e}{e^{2} x}\right )} \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right )^{2} + e n {\left (\frac {{\left (8 \, d^{2} x \log \left (d \sqrt {x} + e\right )^{3} - d^{2} x \log \left (x\right )^{3} + 9 \, d^{2} x \log \left (x\right )^{2} - 42 \, d^{2} x \log \left (x\right ) - 12 \, {\left (d^{2} x \log \left (x\right ) - 3 \, d^{2} x\right )} \log \left (d \sqrt {x} + e\right )^{2} - 84 \, d e \sqrt {x} + 6 \, e^{2} + 6 \, {\left (d^{2} x \log \left (x\right )^{2} - 6 \, d^{2} x \log \left (x\right ) + 14 \, d^{2} x\right )} \log \left (d \sqrt {x} + e\right )\right )} n^{2}}{e^{3} x} - \frac {6 \, {\left (4 \, d^{2} x \log \left (d \sqrt {x} + e\right )^{2} + d^{2} x \log \left (x\right )^{2} - 6 \, d^{2} x \log \left (x\right ) - 12 \, d e \sqrt {x} + 2 \, e^{2} - 4 \, {\left (d^{2} x \log \left (x\right ) - 3 \, d^{2} x\right )} \log \left (d \sqrt {x} + e\right )\right )} n \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right )}{e^{3} x}\right )}\right )} b^{3} - \frac {3 \, a b^{2} \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right )^{2}}{x} - \frac {3 \, a^{2} b \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right )}{x} - \frac {a^{3}}{x} \]

input
integrate((a+b*log(c*(d+e/x^(1/2))^n))^3/x^2,x, algorithm="maxima")
 
output
3/2*a^2*b*e*n*(2*d^2*log(d*sqrt(x) + e)/e^3 - d^2*log(x)/e^3 - (2*d*sqrt(x 
) - e)/(e^2*x)) - b^3*log(c*(d + e/sqrt(x))^n)^3/x + 3/4*(4*e*n*(2*d^2*log 
(d*sqrt(x) + e)/e^3 - d^2*log(x)/e^3 - (2*d*sqrt(x) - e)/(e^2*x))*log(c*(d 
 + e/sqrt(x))^n) - (4*d^2*x*log(d*sqrt(x) + e)^2 + d^2*x*log(x)^2 - 6*d^2* 
x*log(x) - 12*d*e*sqrt(x) + 2*e^2 - 4*(d^2*x*log(x) - 3*d^2*x)*log(d*sqrt( 
x) + e))*n^2/(e^2*x))*a*b^2 + 1/8*(12*e*n*(2*d^2*log(d*sqrt(x) + e)/e^3 - 
d^2*log(x)/e^3 - (2*d*sqrt(x) - e)/(e^2*x))*log(c*(d + e/sqrt(x))^n)^2 + e 
*n*((8*d^2*x*log(d*sqrt(x) + e)^3 - d^2*x*log(x)^3 + 9*d^2*x*log(x)^2 - 42 
*d^2*x*log(x) - 12*(d^2*x*log(x) - 3*d^2*x)*log(d*sqrt(x) + e)^2 - 84*d*e* 
sqrt(x) + 6*e^2 + 6*(d^2*x*log(x)^2 - 6*d^2*x*log(x) + 14*d^2*x)*log(d*sqr 
t(x) + e))*n^2/(e^3*x) - 6*(4*d^2*x*log(d*sqrt(x) + e)^2 + d^2*x*log(x)^2 
- 6*d^2*x*log(x) - 12*d*e*sqrt(x) + 2*e^2 - 4*(d^2*x*log(x) - 3*d^2*x)*log 
(d*sqrt(x) + e))*n*log(c*(d + e/sqrt(x))^n)/(e^3*x)))*b^3 - 3*a*b^2*log(c* 
(d + e/sqrt(x))^n)^2/x - 3*a^2*b*log(c*(d + e/sqrt(x))^n)/x - a^3/x
 
3.5.39.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 543 vs. \(2 (249) = 498\).

Time = 0.40 (sec) , antiderivative size = 543, normalized size of antiderivative = 1.91 \[ \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx=\frac {4 \, {\left (\frac {2 \, {\left (d \sqrt {x} + e\right )} b^{3} d n^{3}}{e \sqrt {x}} - \frac {{\left (d \sqrt {x} + e\right )}^{2} b^{3} n^{3}}{e x}\right )} \log \left (\frac {d \sqrt {x} + e}{\sqrt {x}}\right )^{3} + 6 \, {\left (\frac {{\left (b^{3} n^{3} - 2 \, b^{3} n^{2} \log \left (c\right ) - 2 \, a b^{2} n^{2}\right )} {\left (d \sqrt {x} + e\right )}^{2}}{e x} - \frac {4 \, {\left (b^{3} d n^{3} - b^{3} d n^{2} \log \left (c\right ) - a b^{2} d n^{2}\right )} {\left (d \sqrt {x} + e\right )}}{e \sqrt {x}}\right )} \log \left (\frac {d \sqrt {x} + e}{\sqrt {x}}\right )^{2} - 6 \, {\left (\frac {{\left (b^{3} n^{3} - 2 \, b^{3} n^{2} \log \left (c\right ) + 2 \, b^{3} n \log \left (c\right )^{2} - 2 \, a b^{2} n^{2} + 4 \, a b^{2} n \log \left (c\right ) + 2 \, a^{2} b n\right )} {\left (d \sqrt {x} + e\right )}^{2}}{e x} - \frac {4 \, {\left (2 \, b^{3} d n^{3} - 2 \, b^{3} d n^{2} \log \left (c\right ) + b^{3} d n \log \left (c\right )^{2} - 2 \, a b^{2} d n^{2} + 2 \, a b^{2} d n \log \left (c\right ) + a^{2} b d n\right )} {\left (d \sqrt {x} + e\right )}}{e \sqrt {x}}\right )} \log \left (\frac {d \sqrt {x} + e}{\sqrt {x}}\right ) + \frac {{\left (3 \, b^{3} n^{3} - 6 \, b^{3} n^{2} \log \left (c\right ) + 6 \, b^{3} n \log \left (c\right )^{2} - 4 \, b^{3} \log \left (c\right )^{3} - 6 \, a b^{2} n^{2} + 12 \, a b^{2} n \log \left (c\right ) - 12 \, a b^{2} \log \left (c\right )^{2} + 6 \, a^{2} b n - 12 \, a^{2} b \log \left (c\right ) - 4 \, a^{3}\right )} {\left (d \sqrt {x} + e\right )}^{2}}{e x} - \frac {8 \, {\left (6 \, b^{3} d n^{3} - 6 \, b^{3} d n^{2} \log \left (c\right ) + 3 \, b^{3} d n \log \left (c\right )^{2} - b^{3} d \log \left (c\right )^{3} - 6 \, a b^{2} d n^{2} + 6 \, a b^{2} d n \log \left (c\right ) - 3 \, a b^{2} d \log \left (c\right )^{2} + 3 \, a^{2} b d n - 3 \, a^{2} b d \log \left (c\right ) - a^{3} d\right )} {\left (d \sqrt {x} + e\right )}}{e \sqrt {x}}}{4 \, e} \]

input
integrate((a+b*log(c*(d+e/x^(1/2))^n))^3/x^2,x, algorithm="giac")
 
output
1/4*(4*(2*(d*sqrt(x) + e)*b^3*d*n^3/(e*sqrt(x)) - (d*sqrt(x) + e)^2*b^3*n^ 
3/(e*x))*log((d*sqrt(x) + e)/sqrt(x))^3 + 6*((b^3*n^3 - 2*b^3*n^2*log(c) - 
 2*a*b^2*n^2)*(d*sqrt(x) + e)^2/(e*x) - 4*(b^3*d*n^3 - b^3*d*n^2*log(c) - 
a*b^2*d*n^2)*(d*sqrt(x) + e)/(e*sqrt(x)))*log((d*sqrt(x) + e)/sqrt(x))^2 - 
 6*((b^3*n^3 - 2*b^3*n^2*log(c) + 2*b^3*n*log(c)^2 - 2*a*b^2*n^2 + 4*a*b^2 
*n*log(c) + 2*a^2*b*n)*(d*sqrt(x) + e)^2/(e*x) - 4*(2*b^3*d*n^3 - 2*b^3*d* 
n^2*log(c) + b^3*d*n*log(c)^2 - 2*a*b^2*d*n^2 + 2*a*b^2*d*n*log(c) + a^2*b 
*d*n)*(d*sqrt(x) + e)/(e*sqrt(x)))*log((d*sqrt(x) + e)/sqrt(x)) + (3*b^3*n 
^3 - 6*b^3*n^2*log(c) + 6*b^3*n*log(c)^2 - 4*b^3*log(c)^3 - 6*a*b^2*n^2 + 
12*a*b^2*n*log(c) - 12*a*b^2*log(c)^2 + 6*a^2*b*n - 12*a^2*b*log(c) - 4*a^ 
3)*(d*sqrt(x) + e)^2/(e*x) - 8*(6*b^3*d*n^3 - 6*b^3*d*n^2*log(c) + 3*b^3*d 
*n*log(c)^2 - b^3*d*log(c)^3 - 6*a*b^2*d*n^2 + 6*a*b^2*d*n*log(c) - 3*a*b^ 
2*d*log(c)^2 + 3*a^2*b*d*n - 3*a^2*b*d*log(c) - a^3*d)*(d*sqrt(x) + e)/(e* 
sqrt(x)))/e
 
3.5.39.9 Mupad [B] (verification not implemented)

Time = 1.82 (sec) , antiderivative size = 357, normalized size of antiderivative = 1.25 \[ \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^3}{x^2} \, dx=\frac {\frac {d\,\left (2\,a^3-3\,a^2\,b\,n+3\,a\,b^2\,n^2-\frac {3\,b^3\,n^3}{2}\right )}{e}-\frac {d\,\left (2\,a^3-6\,a\,b^2\,n^2+9\,b^3\,n^3\right )}{e}}{\sqrt {x}}-{\ln \left (c\,{\left (d+\frac {e}{\sqrt {x}}\right )}^n\right )}^3\,\left (\frac {b^3}{x}-\frac {b^3\,d^2}{e^2}\right )+\ln \left (c\,{\left (d+\frac {e}{\sqrt {x}}\right )}^n\right )\,\left (\frac {\frac {3\,b\,d\,\left (2\,a^2-2\,a\,b\,n+b^2\,n^2\right )}{e}-\frac {6\,b\,d\,\left (a^2-b^2\,n^2\right )}{e}}{\sqrt {x}}-\frac {3\,b\,\left (2\,a^2-2\,a\,b\,n+b^2\,n^2\right )}{2\,x}\right )+{\ln \left (c\,{\left (d+\frac {e}{\sqrt {x}}\right )}^n\right )}^2\,\left (\frac {\frac {3\,b^2\,d\,\left (2\,a-b\,n\right )}{e}-\frac {6\,a\,b^2\,d}{e}}{\sqrt {x}}-\frac {3\,b^2\,\left (2\,a-b\,n\right )}{2\,x}+\frac {3\,d\,\left (2\,a\,b^2\,d-3\,b^3\,d\,n\right )}{2\,e^2}\right )-\frac {a^3-\frac {3\,a^2\,b\,n}{2}+\frac {3\,a\,b^2\,n^2}{2}-\frac {3\,b^3\,n^3}{4}}{x}+\frac {\ln \left (d+\frac {e}{\sqrt {x}}\right )\,\left (6\,a^2\,b\,d^2\,n-18\,a\,b^2\,d^2\,n^2+21\,b^3\,d^2\,n^3\right )}{2\,e^2} \]

input
int((a + b*log(c*(d + e/x^(1/2))^n))^3/x^2,x)
 
output
((d*(2*a^3 - (3*b^3*n^3)/2 + 3*a*b^2*n^2 - 3*a^2*b*n))/e - (d*(2*a^3 + 9*b 
^3*n^3 - 6*a*b^2*n^2))/e)/x^(1/2) - log(c*(d + e/x^(1/2))^n)^3*(b^3/x - (b 
^3*d^2)/e^2) + log(c*(d + e/x^(1/2))^n)*(((3*b*d*(2*a^2 + b^2*n^2 - 2*a*b* 
n))/e - (6*b*d*(a^2 - b^2*n^2))/e)/x^(1/2) - (3*b*(2*a^2 + b^2*n^2 - 2*a*b 
*n))/(2*x)) + log(c*(d + e/x^(1/2))^n)^2*(((3*b^2*d*(2*a - b*n))/e - (6*a* 
b^2*d)/e)/x^(1/2) - (3*b^2*(2*a - b*n))/(2*x) + (3*d*(2*a*b^2*d - 3*b^3*d* 
n))/(2*e^2)) - (a^3 - (3*b^3*n^3)/4 + (3*a*b^2*n^2)/2 - (3*a^2*b*n)/2)/x + 
 (log(d + e/x^(1/2))*(21*b^3*d^2*n^3 - 18*a*b^2*d^2*n^2 + 6*a^2*b*d^2*n))/ 
(2*e^2)